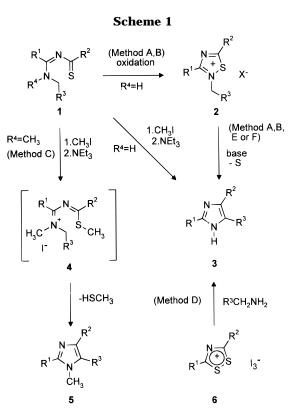
Versatile Novel Syntheses of Imidazoles[†]

Andreas Rolfs and Jürgen Liebscher*

Institut für Chemie, Humboldt-Universität Berlin, Hessische Strasse 1-2, D-10115 Berlin, Germany

Received January 14, 1997[®]

A novel ring transformation/desulfurization of substituted 2-methyl-1,2,4-thiadiazolium salts 2 provides a versatile entry to imidazoles **3** with a variety of substituents. Simple one-pot procedures combine the preparation of starting 1,2,4-thiadiazolium salts $\mathbf{2}$ from N-(thiocarbonyl)-N-methylamidines 1 or 1,2,4-dithiazolium triiodides 6 with the ring transformation/desulfurization to the imidazoles 3. Alternatively, N-(thiocarbonyl)-N-methylamidines 1 can be transformed to imidazoles 3 or to 1-substituted imidazoles 5 via S-methylation and elimination of methylthiol. In the same manner, a new entry to 4H-imidazoles 8 could be developed.


Introduction

Despite the numerous known syntheses of the imidazole ring, it is surprising that special substitution patterns such as in 2-aryl-5-(N,N-dialkylamino)imidazole-4-carboxylates are as yet difficult to synthesize.¹ Hence, there is still a need to develop general routes to this heterocyclic system. Possibilities of constructing the imidazole skeleton by ring closure of a C-N-C-N-C precursor have rarely been investigated.¹ Thus, basecatalyzed cyclization of N-cyano-N-methylamidines with COO-alkyl, CN, or COPh substituents at the methyl group affords 4-aminoimidazoles with electron-withdrawing substituents at position 5,2-4 while ring closure of 2-azavinamidinium salts in the presence of sodium amide gives 4-(dimethylamino)imidazoles.⁵ Condensed imidazoles were obtained by desulfurization of 3-[(acylamino)methyl]tetrahydro-1,3-thiazine-2-thiones in the presence of trifluoroacetanhydride.⁶ We now report novel and very versatile routes to imidazoles 3, 5, and 8 starting from N-(thiocarbonyl) amidines 1 as a C-N-C-N-Cbuilding block or from 1,2,4-dithiazolium salts 6. In two of these syntheses (methods A and B), a new type of ring transformation of intermediate 1,2,4-thiadiazolium salts 2 is involved.

Results and Discussion

The general background of the synthesis of imidazoles **3** was derived from a recently developed efficient access to pyrroles based on the ring transformation/desulfurization of 2-methyl-1,2-thiazolium salts that could be obtained by oxidative ring closure of β -aminovinyl thiocarbonyl compounds.^{7–9} Extending this concept to the N-analogous 2-methyl-1,2,4-thiadiazolium salts 2 should give rise to the formation of imidazoles 3. We therefore

- (2) Edenhofer, A. Helv. Chim. Acta 1975, 58, 2192.
- (a) Gewald, K.; Heinhold, G. *Monatsh. Chem.* **1976**, *107*, 1413.
 (4) Gompper, R.; Gäng, M.; Saygin, F. *Tetrahedron Lett.* **1966**, 1885.
- (5) Gompper, R.; Schneider, C. S. Synthesis 1979, 215.
- (6) Holzapfel, C. W.; von Platen, A. E. S. Afr. J. Chem. **1987**, 40, 153; Chem. Abstr. **1988**, 108, 21788.
- (7) Rolfs, A.; Liebscher, J. Angew. Chem., Int. Ed. Engl. **1993**, 32, 712.
- (8) Rolfs, A.; Brosig, H.; Liebscher, J. J. Prakt. Chem. 1995, 337, 310.
- (9) Rolfs, A.; Liebscher, J. J. Chem. Soc., Perkin Trans. 1 1996, in press

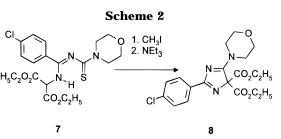
approached the in-situ oxidative cyclization of substituted *N*-methyl-*N*-(thiocarbonyl)amidines **1** by applying hydrogen peroxide in methanol (method A) or iodine in the presence of triethylamine (method B). The expected 1,2,4-thiadiazolium salts 2 undergo smooth desulfurization/ring transformation to imidazoles **3**, already in the reaction mixture in most cases (Scheme 1). High yields of **3** were obtained with a wide substitution pattern. It turns out that electron-withdrawing substituents R³ such as alkoxycarbonyl, cyano, aryl, or hetoaryl are required. In the case of aminocarbonyl or 4-nitrophenyl substituents R³ the reaction is slower and intermediate 2-methyl-1,2,4-thiadiazolium salt **2h** ($R^3 = CONH_2$) and the 2*H*-1,3,5-thiadiazines **10d** ($R^3 = 4$ -NO₂C₆H₄) and **10h** ($R^3 =$ CONH₂) (see Scheme 3) can be isolated easily. The transformation of alkoxycarbonyl-substituted compounds **1** (\mathbb{R}^3 = COOalkyl) is fast. A corresponding intermediate **2e** ($\mathbb{R}^3 = \text{COOMe}$) could only be isolated under strongly acidic conditions (see the Experimental Section). The thiadiazolium salts 2e and 2h as well as the 2H-1,3,5thiadiazines 10d and 10h could be desulfurized and rearranged to the corresponding imidazoles 3e ($R^3 =$

[†] Dedicated to Professor Dr. Horst Hartmann on the occasion of his 60th birthday.

Abstract published in Advance ACS Abstracts, April 15, 1997.

⁽¹⁾ Ebel, K. Methoden der Organischen Chemie (Houben-Weyl); Schaumann, E., Ed.; Thieme-Verlag: Stuttgart, New York, 1994; Vol. E 8c, Part 3, p 1.

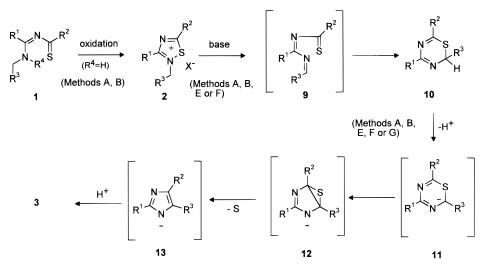
Table 1.Synthesis of Imidazoles 3 and 5

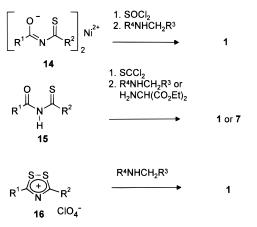

								yield ^a (%)/	
entry	product	\mathbb{R}^1	\mathbb{R}^2	R ³	substrate	reagent	solvent	method	mp (°C) (solvent)
1	3a	C ₆ H ₅	N(CH ₂) ₅	CO ₂ CH ₃	1a	I ₂ /NEt ₃	EtOAc	86/B	176-177 (MeOH)
2	3b	4-ClC ₆ H ₄	N(CH ₂ CH ₂) ₂ O	$CO_2C_2H_5$	1b	I ₂ /NEt ₃	EtOAc	91/B	212-213 (EtOH/H ₂ O)
3	3c	4-ClC ₆ H ₄	N(CH ₂ CH ₂) ₂ O	CN	1c	H_2O_2	MeOH	93/A	251.5 (MeOH)
4	3d	4-ClC ₆ H ₄	N(CH ₂ CH ₂) ₂ O	$4 - NO_2C_6H_4$	1d	I ₂ /NEt ₃	EtOH	94/B	308-310 (EtOH)
5					10d	NEt ₃	EtOH	92/G	
6	3e	4-CH ₃ OC ₆ H ₄	N(CH ₂ CH ₂) ₂ O	CO ₂ CH ₃	1e	H_2O_2	MeOH	96/A	190–191 ^b (MeOH)
7					2e	NEt ₃	MeOH	98/E	
8	3f	4-CH ₃ OC ₆ H ₄	N(CH ₂ CH ₂) ₂ O	$CO_2C(CH_3)_3$	1f	H_2O_2	MeOH	94/A	163–164 (EtOAc/hexane)
9	3g	4-CH ₃ OC ₆ H ₄	N(CH ₂ CH ₂) ₂ O	CO ₂ Bn	1g	H_2O_2	MeOH	94/A	192–193 (EtOH)
10	3ĥ	4-CH ₃ OC ₆ H ₄	N(CH ₂ CH ₂) ₂ O	$CONH_2$	10h	NEt ₃	MeOH	95/G	247-249 (DMF/Et ₂ O)
11					2h	KHCO ₃	MeOH	82/F	
12	3i	4-CH ₃ OC ₆ H ₄	N(CH ₂ CH ₂) ₂ O	COC ₆ H ₅	1i	I ₂ /NEt ₃	EtOAc	65/B	212–214 (EtOH)
13	3j	4-CH ₃ OC ₆ H ₄	$N(CH_3)_2$	CO ₂ CH ₃	1j	I ₂ /NEt ₃	MeOH	96/B	122–122.5 (Et ₂ O/hexane)
14	3k	$4-CH_3OC_6H_4$	N(CH ₂ CH ₂) ₂ NCH ₃	CO_2CH_3	1k	I ₂ /NEt ₃	EtOAc	73/B	153–155 (MeOH)
15	31	3,4-OCH ₂ OC ₆ H ₃	N(CH ₂ CH ₂) ₂ O	CO_2CH_3	11	H_2O_2	MeOH	95/A	232–233 (AcOH/H ₂ O)
16	3m	$4-CF_3C_6H_4$	N(CH ₂ CH ₂) ₂ O	CO_2CH_3	1m	H_2O_2	MeOH	93/A	203-204 (EtOAc/hexane)
17	3n	4-BrC ₆ H ₄	N(CH ₂ CH ₂) ₂ O	CO_2CH_3	1n	I ₂ /NEt ₃	EtOH	94/B	213-214.5 (EtOAc/hexane)
18					1n	CH ₃ I/NEt ₃	MeOH	80/C	
19	30	3-NO ₂ C ₆ H ₄	N(CH ₂ CH ₂) ₂ O	CO ₂ CH ₃	10	H_2O_2	MeOH	84/A	221–222 (MeCN)
20	3p	CH ₃	N(CH ₂ CH ₂) ₂ O	CO ₂ CH ₃	1p	H_2O_2	MeOH	88 /A	142–143 ^c (Et ₂ O)
21	3q	C ₆ H ₅	OC_2H_5	CO ₂ CH ₃	1q	I ₂ /NEt ₃	EtOH	94/B	177–179 (CH ₂ Cl ₂ /hexane)
22	3r	C ₆ H ₅	SC_2H_5	CO_2CH_3	1r	I ₂ /NEt ₃	EtOH	93/B	183–184 (EtOAc/hexane)
23	3s	C ₆ H ₅	C_6H_5	$CO_2C_2H_5$	1s	I ₂ /NEt ₃	EtOAc	90/B	178–180 ^{d,e} (EtOAc/hexane)
24	3t	C ₆ H ₅	C_6H_5	CO_2CH_3	6a	$H_2NCH_2R^3$	MeCN	73/D	191–193 (EtOAc/hexane)
25	3u	$4-CH_3OC_6H_4$	$4-CH_3OC_6H_4$	CO_2CH_3	6b	$H_2NCH_2R^3$	MeCN	80/D	182–183 ^f (EtOAc/hexane)
26	3v	4-CH ₃ OC ₆ H ₄	4-CH ₃ OC ₆ H ₄	CN	6b	$H_2NCH_2R^3$	MeCN	58/D	200–201.5 (CHCl ₃)
27	3w	4-ClC ₆ H ₄	4-ClC ₆ H ₄	$CO_2C_2H_5$	6c	$H_2NCH_2R^3$		46/D	208-209 (EtOAc/hexane)
28	5a	4-ClC ₆ H ₄	N(CH ₂ CH ₂) ₂ O	CO ₂ CH ₃	1x	CH ₃ I/NEt ₃		84/C	142–143 (MeOH)
29	5b	$4-CH_3OC_6H_4$	N(CH ₂ CH ₂) ₂ O	CO_2CH_3	1y	CH ₃ I/NEt ₃	MeOH	87/C	106–107 (CH ₂ Cl ₂ /hexane)

^{*a*} Yield of purified material. Crystal change at ^{*b*}180–182 °C, ^{*c*}122 °C, ^{*d*}167–169 °C, ^{*e*}(lit.¹⁸ 166–167 °C, lit.¹⁹ 173–175 °C), ^{*f*}147–148 °C.

COOMe), **3d** ($R^3 = 4$ -NO₂C₆H₄), and **3h** ($R^3 = CONH_2$), respectively, by treatment with bases (methods E, F, and G). The transformation of the 1,2,4-thiadiazolium salt **2h** to the imidazole **3h** could also be effected in a stepwise manner (method G) via the corresponding 2H-1,3,5-thiadiazine (**10h**) (see the Experimental Section) as an isolated intermediate. For 2*H*-1,3,5-thiadiazines **10**, alternative 4*H*- or 5*H*-isomers were considered, but ¹³C NMR shift of the sp³ ring carbon atom fits best to the structure **10** if the NMR simulation program (ACD-CNMR 1.1. and ACD-HNMR 1.0.) is applied to both possible isomers.

Naturally N.N-disubstituted N-(thiocarbonyl)amidines 1 (R^4 = methyl) can not be oxidized to 1,2,4-thiadiazolium salts 2. In order to gain access to 1-substituted imidazoles 5, these amidines 1 were S-methylated with methyl iodide in the presence of triethylamine (method C). Intermediate N-imidoylisothioimidates 4 would be expected, but loss of methylthiol afforded imidazoles 5 already in the reaction mixture. The application of method C to N-monosubstituted (thiocarbonyl)amidines **1** ($\mathbb{R}^4 = \mathbb{H}$) gives rise to the same imidazoles **3** similarly to the oxidative routes (methods A and B) but in somewhat lower yields. Unlike 1, the bis(ethoxycarbonyl)methyl-substituted (thiocarbonyl)amidine 7 lacks a CH₂ group at the N-atom and thus affords the 4Himidazole-4,4-dicarboxylate 8 (Scheme 2) when subjected to the S-alkylation procedure (method C). This example represents an interesting new synthesis of 4H-imidazoles.¹⁰ The structure of **8** was proved by X-ray crystal analysis.²⁹ Sometimes while handling the 4*H*-imidazole-4,4-dicarboxylate 8 (e.g., upon longer heating during recrystallization), partial transformation to the corresponding aromatic 1H-imidazole 3b was observed.


(10) Sammes, M. P.; Katritzky, A. R. In *Advances in Heterocyclic Chemistry*; Katritzky, A. R., Boulton A. J., Eds.; Academic Press: New York, 1983; Vol. 35, p 413ff.


Finally, an extremely short synthesis of imidazoles **3** ($\mathbb{R}^1 = \mathbb{R}^2 = \operatorname{aryl}$) was discovered by reaction of 3,5-diaryl-1,2,4-dithiazolium triiodides **6** with glycinates or aminoacetonitrile (see Table 1, entries 24–27) (method D). This ring transformation of 1,2,4-dithiazolium salts to imidazoles **3** comprises nucleophilic ring opening¹¹ to give (thiocarbonyl)amidines **1** ($\mathbb{R}^4 = H$), oxidation of the (thiocarbonyl)amidines to 1,2,4-thiadiazolium salts **2** (X⁻ = I) by the triiodide anion, and conversion of the salts **2** to the imidazoles **3**. If the corresponding 1,2,4-dithiazolium perchlorates **16** rather than the triiodides **6** were reacted with \mathbb{R}^3 CH₂NH₂ no imidazoles **3** were obtained but instead *N*-(thioacyl)amidines **1** (see Scheme 4) due to the lack of an oxidizing counterion.

Taking into consideration both the known mechanism of the conversion of β -aminovinyl thiocarbonyl compounds to pyrroles and the observation of intermediates **2** and **10** in the newly developed synthesis of imidazoles **3**, the following reaction mechanism is proposed for the oxidative transformation of (thiocarbonyl)amidines **1** to imidazoles **3** (see Scheme 3). Oxidation of (thiocarbonyl)amidines **1** causes ring closure to 1,2,4-thiadiazolium salts **2** as previously shown for other (thiocarbonyl)amidines.¹²⁻¹⁴ Deprotonation of the NCH₂ position of **2**

⁽¹¹⁾ Liebscher, J.; Hartmann, H. Liebigs Ann. Chem. 1977, 1005.
(12) Liebscher, J.; Hartmann, H. Heterocycles 1985, 23, 997.

Scheme 4

initiates ring opening to N-(thiocarbonyl)-N-alkylideneamidines 9. The latter undergo electrocyclic ring closure to 2*H*-1,3,5-thiadiazines **10**. Further deprotonation causes desulfurization under ring contraction via anionic species **11** and **12**. Final protonation of the resulting imidazole anions affords the products 3. Ring contraction by basecatalyzed desulfurization of 1,3,5-thiadiazines was reported in the 4H-2,4,6-triaryl series.¹⁵

Regardless of this multistep character, the one-pot synthesis of imidazoles 3 from (thiocarbonyl)amidines 1 is a very efficient and novel route to this heterocyclic ring system. It allows a wide scope of substituents especially with disubstituted amino, alkoxy, or alkylthio groups for R^2 at position 4. Until now, such substituent patterns were rarely obtained by ring-closure synthesis^{5,16} but by substituent modification (e.g., pharmaceutically active 4-(dialkylamino)imidazole-5-carboxylates were obtained by reductive alkylation of N-unsubstituted 4-aminoimidazole-5-carboxylates¹⁷). The syntheses of imidazoles **3**,

(13) Liebscher; J.; Mitzner, E.; Radics, U.; Klempke, S. Z. Chem. 1985, 25, 363.

- (17) Heyes, J.; Ward, N. Ger. Offen. 2,142,831, 02 March 1972; Chem. Abstr. 1972, 76, 153744.
- (18) Brackeen, M. F.; Stafford, J. A.; Feldmann, P. L.; Karanewsky, D. S. Tetrahedron Lett. 1994. 1635.

5, and 8 from 1 and 7 demonstrate a considerable extension of this type of ring synthesis starting from a C-N-C-N-C precursor.

The starting materials **1** and **7** were obtained by adopting known procedures, e.g., reaction of amines with either 3,5-diaryl-1,2,4-dithiazolium salts 16,¹¹ N-(thiocarbonyl)imidoyl chlorides obtained by O-Cl exchange from corresponding Ni²⁺ chelates 14 with thionyl chloride, 20,21 or N-acylthioureas **16** with thiophosgene²² (see Scheme 4).

Experimental Section

General Methods. All solvents were purchased from commercial sources and used as received unless otherwise stated. The reactions and the purities of compounds were monitored by TLC performed on precoated silica gel plates with a fluorescent indicator (Merck 60 F₂₅₄). Merck Kieselgel 60 (0.040-0.063) was used for column chromatography. The ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded on a Bruker AC-300 spectrometer with the solvent peak as the reference. Elemental analyses were performed with a Leco CHNS-932 apparatus.

3,5-Diaryl-1,2,4-dithiazolium triiodides 6,11,23 3,5-diaryl-1,2,4-dithiazolium perchlorate 16 ($R_1 = R_2 = C_6H_5$),¹¹ benzoylthiocarbamic acid O-ethyl ester 15 ($R^1 = C_6H_5$, $R^2 =$ $OC_2H_5)^{24}$ and benzoyldithiocarbamic acid ethyl ester 15 (R¹ = C_6H_5 , $R^2 = SC_2H_5$)²⁵ and Ni²⁺ chelate **14** ($R^1 = C_6H_5$, $R^2 =$ $N(CH_2)_5)^{20}$ were prepared according to literature procedures.

Preparation of Starting Materials and Precursors. General Procedure for the Preparation of N,N-Disubstituted N-Acylthioureas 15 (Adopted from Ref 11). A stirred solution of acyl chloride (R¹COCl) (0.1 mol) and KSCN (11.7 g, 0.12 mol) in dry MeCN (150 mL) was refluxed (for time see below). After the mixture was cooled to rt, a solution of the corresponding amine (0.12 mol) in MeCN (40 mL) was added dropwise (temperature maintained below 50 °C). The mixture was stirred for 30 min and poured into an ice/water mixture (500 mL), again with stirring. The precipitate was collected and recrystallized from EtOH/H₂O. The yields given were not optimized.

- (21) Beyer, L.; Hartung, J. *Tetrahedron* **1984**, *40*, 405. (22) Weber, G.; Hartung, J.; Beyer, L. *Tetrahedron Lett.* **1988**, *29*, 3475
- (23) Liebscher, J.; Hartmann, H. Heterocycles 1985, 23, 997.
- (24) Loessner, L. J. Prakt. Chem. 1874, 10, 235.
 (25) Wheeler, M. J. Am. Chem. Soc. 1901, 23, 292.

⁽¹⁴⁾ Zyabrev, V. S.; Kharchenko, A. V.; Pirozhenko, V. V.; Drach, (15) *Light View*, V. S., Martinenko, A. V., 1102111180
 (15) Giordano, C.; Belli, A. *Synthesis* 1975, 167.

⁽¹⁶⁾ Brown, T.; Kadir, D.; Mackenzie, G.; Shaw, G. J. Chem. Soc., Perkin Trans. 1 1979, 3107.

⁽¹⁹⁾ Jackson, B.; Märky, M.; Hansen, H.-J.; Schmid, H. Helv. Chim. Acta 1972, 919.

⁽²⁰⁾ Beyer, L.; Hoyer, E.; Hennig, H.; Kirmse, R.; Hartmann, H.; Liebscher, J. J. Prakt. Chem. **1975**, 317, 829.

1-[*N*-Benzoyl(thiocarbamoyl)]piperidine [$\mathbb{R}^1 = \mathbb{C}_6\mathbb{H}_5$, $\mathbb{R}^2 = \mathbb{N}(\mathbb{C}\mathbb{H}_2)_5$]: 2 h reflux, yield 80%, colorless solid; mp 126–128 °C (lit.²⁶ mp 122–123 °C).

4-[*N*-(**4-**Chlorobenzoyl)(thiocarbamoyl)]morpholine [\mathbb{R}^1 = **4-**ClC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$]: 40 min reflux, yield 65%, colorless solid; mp 152–153 °C (lit.²⁶ mp 153–154 °C).

4-[*N*-(4-Methoxybenzoyl)(thiocarbamoyl)]morpholine [$\mathbf{R}^1 = 4$ -CH₃OC₆H₄, $\mathbf{R}^2 = \mathbf{N}(CH_2CH_2)_2O$]: 2 h reflux, yield 74%, colorless solid; mp 136–137 °C (lit.²⁷ mp 134 °C).

N-(4-Methoxybenzoyl)-N,**N-dimethylthiourea** [$\mathbf{R}^1 = \mathbf{4}$ -**CH**₃**OC**₆**H**₄, $\mathbf{R}^2 = \mathbf{N}(\mathbf{CH}_3)_2$]: 2 h reflux, yield 51%, colorless solid; mp 127–128 °C (lit.²⁶ mp 121–122 °C).

1-[*N*-(**4-Methoxybenzoyl**)(**thiocarbamoyl**)]-**4-methylpiperazine** [$\mathbf{R}^1 = \mathbf{4}$ -CH₃OC₆H₄, $\mathbf{R}^2 = \mathbf{N}(CH_{2CH_2})_2 \text{NCH}_3$]: 2 h reflux, yield 72%, colorless solid; mp 171–173 °C. Anal. Calcd for C₁₄H₁₉N₃O₂S: C, 57.31; H, 6.53; N, 14.33; S, 10.93. Found: C, 57.29; H, 6.76; N, 14.36; S, 10.90.

4-[*N*-[**3,4-**(Methylenedioxy)benzoyl](thiocarbamoyl)]morpholine [$\mathbb{R}^1 = 3,4$ -OCH₂OC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$]: 1 h reflux, yield 77%, colorless solid; mp 173–174 °C. Anal. Calcd for C₁₃H₁₄N₂O₄S: C, 53.05; H, 4.79; N, 9.52; S, 10.89. Found: C, 53.20; H, 4.48; N, 9.69; S, 10.88.

4-[*N*-[**4-**(**Trifluoromethyl**)**benzoyl**](**thiocarbamoyl**)]**morpholine** [$\mathbf{R}^1 = 4$ -**C** $\mathbf{F}_3\mathbf{C}_6\mathbf{H}_4$, $\mathbf{R}^2 = \mathbf{N}(\mathbf{CH}_2\mathbf{CH}_2)_2\mathbf{O}$]: 2 h reflux, yield 63%, colorless solid; mp 167–169 °C. Anal. Calcd for C₁₃H₁₃F₃N₂O₂S: C, 49.05; H, 4.12; N, 8.80; S, 10.07. Found: C, 49.04; H, 4.46; N, 8.47; S, 9.83.

4-[*N*-(**4-Bromobenzoyl**)(thiocarbamoyl)]morpholine [**R**¹ = **4-BrC₆H₄**, **R**² = **N**(**CH₂CH₂)₂O]:** 2 h reflux, yield 52%, colorless solid; mp 159–160 °C. Anal. Calcd for C₁₂H₁₃-BrN₂O₂S: C, 43.78; H, 3.98; N, 8.51. Found: C, 43.67; H, 3.83; N, 8.69.

4-[*N*-(**3-**Nitrobenzoyl)(thiocarbamoyl)]morpholine [\mathbb{R}^1 = **3-**NO₂C₆H₄, $\mathbb{R}^2 = \mathbb{N}(\mathbb{CH}_2\mathbb{CH}_2)_2\mathbb{O}$]: 40 min reflux, yield 36%, colorless solid; mp 154–155 °C. Anal. Calcd for C₁₂H₁₃N₃O₄S: C, 48.80; H, 4.44; N, 14.23; S, 10.86. Found: C, 48.80; H, 4.12; N, 14.21; S, 10.89.

4-[*N*-Acetyl(thiocarbamoyl)]morpholine [$\mathbb{R}^1 = \mathbb{CH}_3$, $\mathbb{R}^2 = \mathbb{N}(\mathbb{CH}_2\mathbb{CH}_2)_2\mathbb{O}$]. N-Acetyldithiocarbamic acid ethyl ester ²⁸ (16.3 g, 0.1 mol) was heated with morpholine (8.7 g, 0.1 mol) in EtOH (120 mL) for 0.5 h, followed by evaporation of the solvent. Acetone was added and the product precipitated with hexane: colorless solid, yield 42%; mp 132–133 °C. Anal. Calcd for C₇H₁₂N₂O₂S: C, 44.66; H, 6.43; N, 14.88. Found: C, 44.83; H, 6.41; N, 14.75.

Ni²⁺-Chelates 14 were prepared according to the literature procedure.²⁰

 $\mathbf{R}^1 = 4$ -ClC₆H₄, $\mathbf{R}^2 = \mathbf{N}(\mathbf{CH}_2\mathbf{CH}_2)_2\mathbf{O}$: light brown solid, yield 91%; mp 299 °C dec. Anal. Calcd for C₂₄H₂₄Cl₂N₄O₄S₂Ni: C, 46.03; H, 3.86; N, 8.95. Found: C, 45.90; H, 3.81; N, 8.94.

General Procedure for the Preparation of [Amino(thiocarbonyl)]amidines 1 ($\mathbb{R}^4 = \mathbb{H}$) Starting from Nickel Chelates 14 (Adopted from Ref 21). Ni²⁺ chelate 14 (10 mmol) was suspended in dry CCl₄ (60 mL). A solution of SOCl₂ (3.14 g, 20 mmol) in CCl₄ (10 mL) was added under stirring over a period of 30 min. The mixture was gently warmed (about 50 °C) for 30 min. After the mixutre was cooled to rt, the precipitated NiCl₂ was removed by suction filtrates were evaporated to give the corresponding crude yellow imidoyl chloride, which was used without further purification [$\mathbb{R}^1 = C_6H_5$, $\mathbb{R}^2 =$ N(CH₂)₅: yield 67%; $\mathbb{R}^1 = 4$ -ClC₆H₄, $\mathbb{R}^2 = N(CH_2CH_2)_2$): yield 68%]. The crude product (15 mmol) was suspended in dry THF (80 mL) and combined with H₂NCH₂ \mathbb{R}^3 ·HCl (15 mmol). A solution of Et_3N (3.1 g, 30 mmol) in THF (20 mmol) was added dropwise with stirring. The mixture was refluxed and magnetically stirred for 2 h. After the mixture was cooled to rt, $Et_3NH^+Cl^-$ was filtered off and washed with THF (50 mL). The combined solutions were evaporated to dryness and crystallized from EtOH/water (50 mL, 9:1).

N-[(Methoxycarbonyl)methyl]-*N*-[piperidin-1-yl(thiocarbonyl)]benzamidine (1a) [$\mathbb{R}^1 = \mathbb{C}_6 \mathbb{H}_5$, $\mathbb{R}^2 = \mathbb{N}(\mathbb{C}\mathbb{H}_2)_5$, $\mathbb{R}^3 = \mathbb{C}\mathbb{O}_2\mathbb{C}\mathbb{H}_3$, $\mathbb{R}^4 = \mathbb{H}$]: colorless solid, yield 66%; mp 111–113 °C; ¹H NMR (CDCl₃) δ 1.45 (m, 2 H), 1.56 (m, 4 H), 3.64 (m, 2 H), 3.70 (s, 3 H), 4.02 (m, 2 H), 4.11 (d, J = 4.8 Hz, 2 H), 5.8 (br, 1 H), 7.30–7.45 (m, 5 H); ¹³C NMR δ 24.3, 25.5, 25.9, 43.9, 48.5, 50.2, 52.3, 127.5, 128.6, 130.7, 133.6, 157 (br), 170.4, 188 (br). Anal. Calcd for $\mathbb{C}_{16}\mathbb{H}_{21}\mathbb{N}_3\mathbb{O}_2\mathbb{S}$: C, 60.16; H, 6.63; N, 13.16; S, 10.04. Found: C, 60.18; H, 6.68; N, 13.20; S, 10.08.

4-Chloro-*N*-[(ethoxycarbonyl)methyl]-*N*-[morpholino-(thiocarbonyl)]benzamidine (1b) [$\mathbb{R}^1 = 4$ -ClC₆H₄, $\mathbb{R}^2 =$ **N**(CH₂CH₂)₂O, $\mathbb{R}^3 = \mathbb{CO}_2\mathbb{C}_2\mathbb{H}_5$, $\mathbb{R}^4 = \mathbb{H}$]: colorless solid, yield 50%; mp 140–142 °C; ¹H NMR (CDCl₃) δ 1.23 (t, J = 7.1 Hz, 3 H), 3.56 (m, 2 H), 3.64 (m, 2 H), 3.74 (br, 2 H), 4.07 (br, 2 H), 4.08 (d, J = 4.7 Hz, 2 H), 4.15 (q, J = 7.1 Hz, 2 H), 5.8 (br, 1 H), 7.32 (s, 4 H); ¹³C NMR δ 14.2, 44 (br), 47.8, 49.0, 61.8, 66.3, 66.6, 129.0, 137.1, 131.8 (br), 157 (br), 169.6, 188 (br). Anal. Calcd for C₁₆H₂₀ClN₃O₃S: C, 51.96; H, 5.45; N, 11.36; S, 8.67. Found: C, 51.73; H, 5.65; N, 11.06; S, 8.60.

General Procedure for the Preparation of [Amino(thiocarbonyl) amidines 1 and 7 Starting from Acylthioureas **15 (Adopted from Ref 22).** A solution of SCCl₂ (4.85 g, 42 mmol) in dry acetone (15 mL) was added to a stirred solution of N, N-disubstituted N-acylthiourea 15 (40 mmol) in dry acetone (150 mL). After 15 min of stirring the solvent was evaporated. The remaining yellow crude product was dissolved in dry MeCN (140 mL) and combined with H₂NCHR³R⁴ HCl (40 mmol). A solution of Et₃N (8.1 g, 80 mmol) in MeCN (20 mL) was added dropwise with stirring. After 10 min, EtOH (20 mL) was added and the solvent of the reaction mixture removed by rotary evaporation. The residue was recrystallized by dissolution in hot EtOH (80 mL) and then by the dropwise addition of water (10 mL) to the hot solution. After cooling, the product was collected and recrystallized. If no crystals were formed the solution was poured into water (250 mL) and extracted three times with EtOAc (about 100 mL). The organic layer was washed with water, dried with Na₂SO₄, and then concentrated and purified by chromatography (short column, silica gel) using EtOAc/hexane. In most cases, it was possible to observe traces (but up to 23% for 1i) of the corresponding imidazole 3 in the reaction mixture. All substances are colorless solids if not otherwise stated. In some cases, not all ¹³C NMR signals appeared or were broad.

4-Chloro-*N***-(cyanomethyl)**-*N***-[morpholino(thiocarbonyl)]benzamidine (1c)** [$\mathbb{R}^1 = 4$ -ClC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2-CH_2)_2O$, $\mathbb{R}^3 = CN$, $\mathbb{R}^4 = H$]: yield 47%; mp 172–174 °C; ¹H NMR (DMSO-*d*₆) δ 3.62 (m, 4 H), 3.89 (m, 2 H), 3.99 (m, 2 H), 4.29 (s, 2 H), 7.34 (d, *J* = 8.5 Hz, 2 H), 7.51 (d, *J* = 8.5 Hz, 2 H), 8.57 (s, 1 H); ¹³C NMR δ 29.8, 47.6, 48.7, 65.7, 65.9, 117.7, 128.5, 129.9, 131.4, 135.4, 156.9, 188.9. Anal. Calcd for C₁₄H₁₅ClN₄OS: C, 52.09; H, 4.68; N, 17.36; S, 9.93; Cl, 10.98. Found: C, 52.00; H, 4.67; N, 17.17; S, 9.93; Cl; 11.19.

4-Chloro-*N*-[morpholino(thiocarbonyl)]-*N*-(4-nitrobenzyl)benzamidine (1d) [$\mathbb{R}^1 = 4$ -ClC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = 4$ -NO₂C₆H₄, $\mathbb{R}^4 = \mathbb{H}$]: yield 53%; mp 154–156 °C; ¹H NMR (CDCl₃) δ 3.57 (m, 2 H), 3.70 (m, 2 H), 3.81 (br, 2H), 4.14 (m, 2 H), 4.63 (d, J = 5.9 Hz, 2 H), 7.31–7.38 (m, 4 H), 7.47 (d, J = 8.7 Hz, 2 H), 8.18 (d, J = 8.7 Hz, 2 H). Anal. Calcd for C₁₉H₁₉ClN₄O₃S: C, 54.48; H, 4.57; N, 13.38; S, 7.65. Found: C, 54.36; H, 4.61; N, 13.41; S, 7.63.

4-Methoxy-*N***-[(methoxycarbonyl)methyl]**-*N***-[morpholino(thiocarbonyl)]benzamidine (1e)** [$\mathbb{R}^1 = 4$ -CH₃OC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = CO_2CH_3$, $\mathbb{R}^4 = H$]: yield 56%; mp 153–155 °C; ¹H NMR (CDCl₃) δ 3.54 (m, 2 H), 3.64 (m, 2 H), 3.71 (br, 2H), 3.71 (cs, 3 H), 3.77 (s, 3 H), 4.10 (m, 4 H), 5.9 (br, 1 H), 6.83–6.87 (m, 2 H), 7.36–7.39 (m, 2 H); ¹³C NMR δ 44 (br), 47.7, 49.0, 52.4, 55.3, 66.2, 66.6, 114.1, 125.5, 129.3, 158 (br), 161.7, 170.4, 189 (br). Anal. Calcd for C₁₆H₂₁N₃O₄S: C, 54.68; H, 6.02; N, 11.96; S, 9.12. Found: C, 54.67; H, 6.28; N, 11.92; S, 9.00.

⁽²⁶⁾ Brindley, J. C.; Caldwell, J. M.; Meakins, G. D.; Plackett, S. J.; Price, S. J. *J. Chem. Soc., Perkin Trans.* 1 **1987**, 1153.

⁽²⁷⁾ Uher, H.; Foltin, J.; Floch, L. Collect. Czech. Chem. Commun. 1981, 46, 11, 2696.

⁽²⁸⁾ Chanlarow, N. Chem. Ber. 1882, 15, 1987.

⁽²⁹⁾ We gratefully acknowledge Dr. Burghard Ziemer from Humboldt-University Berlin for the X-ray structure determination of compound **8**. Full details can be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany, on quoting the full literature citation and the reference number CSD 406621.

N-[(*tert*-Butoxycarbonyl)methyl]-4-methoxy-*N*'-[morpholino(thiocarbonyl)]benzamidine (1f) [R¹ = 4-CH₃-OC₆H₄, R² = N(CH₂CH₂)₂O, R³ = CO₂C(CH₃)₃, R⁴ = H]: yield 64% (column chromatography); mp 152 °C; ¹H NMR (CDCl₃) δ 1.42 (s, 9 H), 3.54 (m, 2 H), 3.63 (m, 2 H), 3.66 (br, 2 H), 3.76 (s, 3 H), 3.99 (d, *J* = 5.2 Hz, 2 H), 4.11 (m, 2 H), 5.8 (br, 1 H), 6.83 (d, *J* = 8.6 Hz, 2 H), 7.37 (d, *J* = 8.6 Hz, 2 H); ¹³C NMR δ 28.0, 44.8 (br), 47.6, 48.9, 55.3, 66.3, 66.6, 68.2.4, 114.0, 125.8, 129.3, 157.5 (br), 161.6, 168.9, 189.5 (br). Anal. Calcd for C₁₉H₂₇N₃O₄S: C, 57.99; H, 6.92; N, 10.68; S, 8.15. Found: C, 58.01; H, 6.86; N, 10.70; S, 8.08.

N-[(Benzyloxycarbonyl)methyl]-4-methoxy-*N*-[morpholino(thiocarbonyl)]benzamidine (1g) [\mathbb{R}^1 = 4-CH₃-OC₆H₄, \mathbb{R}^2 = N(CH₂CH₂)₂O, \mathbb{R}^3 = CO₂Bn, \mathbb{R}^4 = H]: yield 71% (column chromatography); mp 123–124 °C; ¹H NMR (CDCl₃) δ 2.61(m, 2 H), 3.63 (m, 4 H), 3.76 (s, 3 H), 4.10 (m, 2H), 4.15 (d, *J* = 5.3 Hz, 2 H), 5.14 (s, 2 H), 5.9 (br, 1 H), 6.85 (d, *J* = 8.7 Hz, 2 H), 7.32 (s, 5 H), 7.37 (d, *J* = 8.7 Hz, 2 H); ¹³C NMR δ 44.3 (br), 47.6, 48.9, 55.3, 66.2, 66.6, 67.2, 114.1, 125.5, 128.3, 128.6, 128.7, 129.3, 135.2, 158 (br), 161.6, 169.8, 190 (br). Anal. Calcd for C₂₂H₂₅N₃O₄S: C, 61.80; H, 5.90; N, 9.83; S, 7.50. Found: C, 61.60; H, 5.94; N, 9.53; S, 7.25.

N-[(Aminocarbonyl)methyl]-4-methoxy-*N*-[morpholino(thiocarbonyl)]benzamidine (1h) [\mathbb{R}^1 = 4-CH₃OC₆H₄, \mathbb{R}^2 = N(CH₂CH₂)₂O, \mathbb{R}^3 = CONH₂, \mathbb{R}^4 = H]: yield 42%; mp 166–168 °C; ¹H NMR (DMSO-*d*₆) δ 3.51 (m, 2 H), 3.57 (m, 2 H), 3.71 (m, 2 H), 3.78 (s, 3 H), 3.80 (s, 2 H), 3.98 (m, 2 H), 6.96 (d, *J* = 8.7 Hz, 2 H), 7.08 (s, 1H), 7.38 (d, *J* = 8.7 Hz, 2 H), 7.38 (br, 1 H), 7.96 (br, 1H); ¹³C NMR δ 44.7, 47.2, 48.5, 5.5.3, 65.8, 66.0, 113.5, 125.7, 129.7, 157.4, 160.9, 170.9, 188.9. Anal. Calcd for C₁₅H₂₀N₄O₃S: C, 53.55; H, 5.99; N, 16.66; S, 9.53. Found: C, 53.35; H, 6.23; N, 16.38; S, 9.49.

N-(Benzoylmethyl)-4-methoxy-*N*-[morpholino(thiocarbonyl)]benzamidine (1i) [$\mathbb{R}^1 = 4$ -CH₃OC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = COC_6H_5$, $\mathbb{R}^4 = H$]: yield 21%; mp 160–162 °C; ¹H NMR (CDCl₃) δ 3.56 (m, 2 H), 3.68 (m, 2 H), 3.76 (m, 2 H), 3.80 (s, 3 H), 4.16 (m, 2 H), 4.89 (d, *J* = 4.5 Hz, 2 H), 6.5 (br, 1 H), 6.90 (m, 2 H), 7.44-7.64 (m, 5 H), 7.95 (m, 2 H); ¹³C NMR δ 47.7, 49.1, 55.4, 66.2, 66.6, 114.1, 125.7, 128.0, 129.0, 129.3, 134.3, 134.4, 158 (br), 161.8, 190 (br), 194.1. Anal. Calcd for C₂₁H₂₃N₃O₃S: C, 63.45; H, 5.83; N, 10.57. Found: C, 63.55; H, 5.79; N, 10.68.

N-[(Dimethylamino)(thiocarbonyl)]-4-methoxy-*N*-[(methoxycarbonyl)methyl]benzamidine (1j) [$\mathbb{R}^1 = 4$ -CH₃-OC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_3)_2$, $\mathbb{R}^3 = CO_2CH_3$, $\mathbb{R}^4 = \mathbb{H}$]: yield 50%; mp 158–160 °C; ¹H NMR (CDCl₃) δ 3.14 (s, 3 H), 3.34 (s, 3 H), 3.70 (s, 3 H), 3.76 (s, 3 H), 4.10 (d, J = 4.4 Hz, 2 H), 6.0 (br, 1 H), 6.83 (d, J = 8.7 Hz, 2 H), 7.36 (d, J = 8.7 Hz, 2 H); ¹³C NMR δ 40.4, 42.7, 44.5, 52.8, 55.7, 114.4, 126.2, 129.6, 161.9, 170.9. Anal. Calcd for C₁₄H₁₉N₃O₃S: C, 54.35; H, 6.19; N, 13.58. Found: C, 54.64; H, 6.19; N, 13.52.

4-Methoxy-*N*-[(methoxycarbonyl)methyl]-*N*-[(1-methylpiperazin-4-yl)(thiocarbonyl)]benzamidine (1k) [$\mathbb{R}^1 =$ 4-CH₃OC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2\mathbb{N}CH_3$, $\mathbb{R}^3 = \mathbb{CO}_2CH_3$, $\mathbb{R}^4 =$ H]: colorless oil, yield 51% (column chromatography); crude product was used without further purification; ¹H NMR (CDCl₃) δ 2.26 (s, 3 H), 2.31 (m, 2 H), 2.40 (m, 2 H), 3.72 (s, 3 H), 3.76 (m, 2H), 3.77 (s, 3 H), 4.16 (m, 2 H), 4.12 (d, J = 5.2Hz, 2 H), 5.9 (br, 1 H), 6.85 (d, J = 8.8 Hz, 2 H), 7.37 (d, J =8.8 Hz, 2 H); ¹³C NMR δ 44.0, 45.8, 47.0, 48.6, 52.4, 54.5, 54.6, 55.3, 114.0, 125.6, 129.2, 157 (br), 161.6, 170.5, 189 (br).

3,4-(Methylenedioxy)-*N*-[(methoxycarbonyl)methyl]-*N*-[morpholino(thiocarbonyl)]benzamidine (11) [\mathbb{R}^1 = **3,4-OCH₂OC₆H₃, \mathbb{R}^2 = N(CH₂CH₂)₂O, \mathbb{R}^3 = CO₂CH₃, \mathbb{R}^4 = H**]: yield 46%; mp 191–193 °C; ¹H NMR (CDCl₃) δ 3.60 (m, 2 H), 3.68 (m, 2 H), 3.73 (s, 3 H), 3.77 (br, 2 H), 4.12 (d, *J* = 5.4 Hz, 2 H), 4.15 (m, 2 H), 5.8 (br, 1 H), 5.98 (s, 2 H), 6.78 (d, *J* = 8.0 Hz, 1 H), 6.88 (d, *J* = 1.7 Hz, 1 H), 6.95 (dd, *J* = 8.0, 1.7 Hz, 1 H); ¹³C NMR δ 44.2, 47.8, 49.0, 52.5, 66.3, 66.6, 101.7, 108.1, 108.5, 122.2, 127.2, 147.9, 149.9, 170.2. Anal. Calcd for C₁₆H₁₉N₃O₅S: C, 52.59; H, 5.24; N, 11.50; S, 8.77. Found: C, 52.41; H, 5.38; N, 11.14; S, 8.63.

N-[(Methoxycarbonyl)methyl]-*N*-[morpholino(thiocarbonyl)]-4-(trifluoromethyl)benzamidine (1m) [$\mathbb{R}^1 =$ 4-CF₃C₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = CO_2CH_3$, $\mathbb{R}^4 = H$]: yield 72.5% (column chromatography); mp 132–133 °C; ¹H NMR (CDCl₃) δ 3.61 (m, 2 H), 3.67 (m, 2 H), 3.73 (s, 3 H), 3.78 (br, 2 H), 4.10 (m, 4 H), 5.9 (br), 7.52 (d, J = 8.2 Hz, 2 H), 7.63 (d, J = 8.2 Hz, 2 H); ¹³C NMR δ 44 (br), 47.9, 49.0, 52.6, 66.2, 66.6, 124 (q), 125.7 (d, J = 3.5 Hz), 128.1, 132.5 (q), 137, 170.0. Anal. Calcd for C₁₆H₁₈F₃N₃O₃S: C, 49.35; H, 4.66; N, 10.79; S, 8.23. Found: C, 49.08; H, 4.91; N, 10.69; S, 7.93.

4-Bromo-*N*-[(methoxycarbonyl)methyl]-*N*-[morpholino(thiocarbonyl)]benzamidine (1n) [$\mathbb{R}^1 = 4$ -BrC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = CO_2CH_3$, $\mathbb{R}^4 = H$]: yield 55%; mp 159 °C; ¹H NMR (CDCl₃) δ 3.56 (m, 2 H), 3.64 (m, 2 H), 3.70 (s, 3 H), 3.73 (br, 2 H), 4.08 (m, 4H), 5.9 (br, 1 H), 7.26 (d, J = 8.5Hz, 2 H), 7.48 (d, J = 8.5 Hz, 2 H); ¹³C NMR δ 44.1 (br), 47.9, 49.0, 52.6, 66.3, 66.6, 129.2, 132.0, 170.1. Anal. Calcd for C₁₅H₁₈N₃O₃S·1H₂O: C, 43.06; H, 4.82; N, 10.05; S, 7.66. Found: C, 42.91; H, 4.87; N, 10.11; S, 7.77.

N-[(Methoxycarbonyl)methyl]-*N*-[morpholino(thiocarbonyl)]-3-nitrobenzamidine (10) [$\mathbb{R}^1 = 3$ -NO₂C₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = CO_2CH_3$, $\mathbb{R}^4 = H$]: yield 57%; mp 199–201 °C; ¹H NMR (DMSO- d_6) δ 3.59 (m, 2 H), 3.65 (m, 2 H), 3.69 (s, 3 H), 3.74 (m, 2 H), 3.95 (m, 2 H), 4.07 (d, J = 5.7 Hz, 2 H), 7.76 (m, 2 H), 8.15 (m, 1 H), 8.33 (m, 1 H), 8.74 (br, 1 H); ¹³C NMR δ 43.4, 47.4, 48.8, 52.1, 65.7, 66.0, 122.7, 125.1, 125.5, 130.2, 134.5, 147.3, 156,4, 170.2, 188.8. Anal. Calcd for C₁₅H₁₈N₄O₅S: C, 49.17; H, 4.95; N, 15.30; S, 8.75. Found: C, 49.03; H, 4.65; N, 15.35; S, 8.70.

N-[(Methoxycarbonyl)methyl]-*N*-[morpholino(thiocarbonyl)]acetamidine (1p) [$\mathbb{R}^1 = \mathbb{CH}_3$, $\mathbb{R}^2 = \mathbb{N}(\mathbb{CH}_2\mathbb{CH}_2)_2\mathbb{O}$, $\mathbb{R}^3 = \mathbb{CO}_2\mathbb{CH}_3$, $\mathbb{R}^4 = \mathbb{H}$]: yield 40% (column chromatography); mp 118.5–120 °C; ¹H NMR (CDCl₃) δ 2.14 (s, 3 H), 3.57 (m, 4 H), 3.67 (s, 3 H), 3.70 (m, 2 H), 3.96 (d, J = 5.2 Hz, 2 H), 4.15 (m, 2 H), 5.61 (t, br, 1 H); ¹³C NMR δ 18.1, 43.0, 47.6, 49.2, 52.3, 66.4, 66.6, 157.0, 170.5, 190.3. Anal. Calcd for $\mathbb{C}_{10}\mathbb{H}_{17}N_3O_3S$: C, 46.31; H, 6.61; N, 16.21. Found: C, 46.55; H, 6.80; N, 15.91.

N-[Ethoxy(thiocarbonyl)]-*N*-[(methoxycarbonyl)methyl]benzamidine (1q) ($\mathbf{R}^1 = \mathbf{C}_6\mathbf{H}_5$, $\mathbf{R}^2 = \mathbf{OC}_2\mathbf{H}_5$, $\mathbf{R}^3 = \mathbf{CO}_2\mathbf{CH}_3$, $\mathbf{R}^4 = \mathbf{H}$): yield 27% (column chromatography); mp 95–97 °C; ¹H NMR (CDCl₃) δ 1.16 (s, br, 3 H), 3.76 (s, 3 H), 4.23 (s, br, 2 H), 4.32 (d, J = 6.7 Hz, 2 H), 6.07 (s, br, 1 H), 7.35–7.48 (m, 5 H); ¹³C NMR δ 13.8, 43.9, 52.7, 67.8, 127.7, 128.8, 131.3, 133.0, 160.2, 169.8, 201.3. Anal. Calcd for C₁₃H₁₆N₂O₃S: C, 55.69; H, 5.75; N, 10.00; S, 11.44. Found: C, 55.54; H, 5.70; N, 9.92; S, 11.38.

N-[(Ethylthio)(thiocarbonyl)]-*N*-[(methoxycarbonyl)methyl]benzamidine (1r) ($\mathbf{R}^1 = \mathbf{C}_6\mathbf{H}_5$, $\mathbf{R}^2 = \mathbf{S}\mathbf{C}_2\mathbf{H}_5$, $\mathbf{R}^3 = \mathbf{C}\mathbf{O}_2\mathbf{C}\mathbf{H}_3$, $\mathbf{R}^4 = \mathbf{H}$): yield 35% (column chromatography); mp 102–104 °C; ¹H NMR (CDCl₃) δ 1.24 (t, J = 7.4 Hz, 3 H), 3.04 (q, J = 7.4 Hz, 2 H), 3.74 (s, 3 H), 4.20 (br, 2 H), 6.18 (br, 1 H), 7.35–7.53 (m, 5 H); ¹³C NMR δ 13.4, 31.2, 44.0, 52.6, 128.1, 128.8, 131.4, 156.2, 169.7. Anal. Calcd for C₁₃H₁₆N₂O₂S₂: C, 52.68; H, 5.44; N, 9.45. Found: C, 52.69; H, 5.35; N, 9.38.

4-Chloro-*N***-[(methoxycarbonyl)methyl]**-*N***-methyl**-*N***-[morpholino(thiocarbonyl)]benzamidine (1x) [R¹ = 4-ClC₆H₄, R² = N(CH₂CH₂)₂O, R³ = CO₂CH₃, R⁴ = CH₃]:** yield 55%; mp 150–152 °C; ¹³C NMR (CDCl₃) δ 39.2, 47.8, 49.1, 51.3, 52.2, 66.2, 66.5, 128.7, 129.4, 130.2, 136.0, 156.9, 169.7, 189.6. Anal. Calcd for C₁₆H₂₀ClN₃O₃S: C, 51.96; H, 5.45; N, 11.36; S, 8.67; Cl, 9.58. Found: C, 51.88; H, 5.62; N, 11.25; S, 8.46, Cl, 9.73.

4-Methoxy-*N*-[(methoxycarbonyl)methyl]-*N*-methyl-*N*-[morpholino(thiocarbonyl)]benzamidine (1y) [$\mathbb{R}^1 =$ **4-CH_3OC_6H_4**, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = CO_2CH_3$, $\mathbb{R}^4 = CH_3$]: yield 48%; mp 130–132 °C; ¹H NMR (CDCl₃) δ 2.92 (s, 3 H), 3.60 (m, 4 H), 3.48 (br, 2 H), 3.69 (s, 3 H), 3.77 (s, 3 H), 4.02 (m, 2 H), 4.16 (s, br, 2 H), 6.85 (d, *J* = 8.2 Hz, 2 H), 7.15 (d, *J* = 8.2 Hz, 2 H); ¹³C NMR δ 39.4 (br), 47.7, 49.1, 51.5 (br), 52.1, 55.2, 66.3, 66.6, 113.7, 124.1, 129.6, 160.2, 160.7, 169.9, 190.1. Anal. Calcd for C₁₇H₂₃N₃O₄S: C, 55.87; H, 6.34; N, 11.50. Found: C, 55.74; H, 6.45; N, 11.53.

N-[Bis(ethoxycarbonyl)methyl]-4-chloro-*N-***[morpho-lino(thiocarbonyl)]benzamidine (7):** yield 55%; mp 137–139 °C; ¹H NMR (CDCl₃) δ 1.27 (t, *J* = 7.2 Hz, 6 H), 3.55 (m, 2 H), 3.65 (m, 4 H), 4.08 (m, 2 H), 4.23 (m, 4 H), 5.18 (d, *J* = 6.3 Hz, 1 H), 6.18 (br, 1 H), 7.33–7.39 (m, 4 H); ¹³C NMR δ 14.0, 48.0, 49.1, 58.6, 62.8, 66.2, 66.5, 129.0, 129.1, 131.0, 137.3,

155.5, 166.1, 189.3. Anal. Calcd for $C_{19}H_{24}ClN_3O_5S$: C, 51.64; H, 5.47; N, 9.51; S, 7.26. Found: C, 51.43; H, 5.53; N, 9.51, S, 7.22.

Preparation of N-[(Ethoxycarbonyl)methyl]-N-(thiobenzoyl)-4-benzamidine (1s) ($R^1 = C_6H_5$, $R^2 = C_6H_5$, $R^3 =$ $CO_2C_2H_5$, $R^4 = H$) Starting from 1,2,4-Dithiazolium Salt 16. A solution of Et₃N (2.02 g, 20 mmol) in dry MeCN (10 mL) was added dropwise to a stirred solution of 16 (3.55 g, 10 mmol) and ethyl glycinate hydrochloride (1.4 g, 10 mmol) in dry MeCN (70 mL). After the mixture was stirred for 30 min and the precipitated sulfur filtered off, water (200 mL) was added. The mixture was extracted three times with EtOAc. The organic phase was washed with water and dried with Na₂SO₄. Chromatography on silica gel with hexane/EtOAc afforded 1.82 g of the product **1s** and 0.4g of the imidazole **3s**: red oil, yield 56% (column chromatography); ¹³C NMR δ 14.1, 44.9, 62.0, 127.9, 128.1, 128.7, 128.9, 131.6, 131.7, 133.1, 141 (br), 159 (br), 160.3. Anal. Calcd for $C_{18}H_{18}N_2O_2S:\ C,\ 66.23;$ H, 5.56; N, 8.58. Found: C, 66.21; H, 5.66; N, 8.57.

Preparation of 2-[(Methoxycarbonyl)methyl]-3-(4methoxyphenyl)-5-morpholino-1,2,4-thiadiazolium Perchlorate (2e) $[R^1 = 4-CH_3OC_6H_4, R^2 = N(CH_2CH_2)_2O, R^3$ = **CO**₂**CH**₃, **X** = **ClO**₄⁻]. H₂O₂ (1.7 mL, 30% aqueous solution) was added dropwise with cooling to a solution of the (thiocarbonyl)amidine 1e (1.76 g, 5 mmol) in AcOH (30 mL). After 5 min, HClO₄ (0.8 g, 5.5 mmol, 70% aqueous solution) was added. The product was precipitated by dilution with Et₂O, filtered off by suction filtration, washed with Et₂O, and recrystallized from EtOH: colorless crystals; yield 54%; mp 175-177 °C; 1H NMR (DMSO- d_6) δ 3.57 (m, 2 H), 3.71 (s, 3 H), 3.79 (m, 4 H), 3.86 (s, 3 H), 3.97 (m, 2 H), 5.25 (s, 2 H), 7.16 (d, J = 8.9 Hz, 2 H), 7.74 (d, J = 8.9 Hz, 2 H); ¹³C NMR δ 47.8, 51.0, 51.6, 53.2, 55.8, 64.8, 65.2, 115.0, 117.8, 132.0, 163.2, 167.2, 171.1, 176.7. Anal. Calcd for C₁₆H₂₀ClN₃O₈S: C, 42.72; H, 4.48; N, 9.34; S, 7.13. Found: C, 42.43; H, 4.61; N, 9.42; S, 7.21.

Preparation of [(2-Aminocarbonyl)methyl]-3-(4-methoxyphenyl)-5-morpholino-1,2,4-thiadiazolium Iodide (2h) $[R^{1} = 4 - CH_{3}OC_{6}H_{4}, R^{2} = N(CH_{2}CH_{2})_{2}O, R^{3} = CONH_{2}, X =$ I⁻]. A 3.36 g (10 mmol) portion of the (thiocarbonyl)amidine 1h was dissolved in EtOH (100 mL) with stirring and heating. This was then further combined with a solution of I_2 (2.54 g, 10 mmol) in EtOH (70 mL). After 5 min, Et₃N (1.01 g, 10 mmol) dissolved in EtOH (10 mL) was added dropwise. During cooling to rt the product precipitated. It was filtered by suction, washed first with EtOH and then with Et₂O, and finally dried: colorless solid; yield 3.74 g (81%); mp 176-180 °C dec; ¹H NMR (DMSO- d_6) δ 3.59 (s, br, 2 H), 3.78 (s, 4 H), 3.86 (s, 3 H), 3.95 (s, 2 H), 4.94 (s, 2 H), 7.19 (d, J = 8.9 Hz, 2 H). 7.71 (s, 1 H), 7.74 (d, J = 8.9 Hz, 1 H), 7.91 (s, 1 H); ¹³C NMR & 47.6, 51.4, 52.0, 55.9, 64.9, 65.3, 114.8, 118.5, 132.0, 162.9, 166.7, 170.7, 177.35. Anal. Calcd for C₁₅H₁₉IN₄O₃S: C, 38.97; H, 4.14; N, 12.12. Found: C, 38.75; H, 4.04; N, 12.41.

Preparation of 4-(4-Chlorophenyl)-2-(4-nitrophenyl)-6-morpholino-2*H*-1,3,5-thiadiazine (10d) $[R^1 = 4-ClC_6H_4]$ $R^2 = N(CH_2CH_2)_2O, R^3 = 4-NO_2C_6H_4]$. A solution of I₂ (1.27) g, 5 mmol) in EtOH (50 mL) was added to a hot solution of the (thiocarbonyl)amidine 1d (2.1 g, 5 mmol) in EtOH followed by the addition of Et_3N (0.51 g, ${\rm 5}$ mmol) dissolved in EtOH (10 mL). After the oxidation was complete as confirmed by TLC, the same quantity of Et₃N solution was added and the resulting solution heated to reflux for 2 min. After cooling, the precipitate was filtered off, washed with EtOH, and dried: colorless solid; yield 81.5%; mp 179-181 °C dec; ¹H NMR (CDCl₃) δ 3.78 (br s, 6 H), 4.09 (br s, 2 H), 6.02 (s, 1 H), 7.35 (d, J = 8.6 Hz, 2 H), 7.75 (d, J = 8.7 Hz, 2 H), 8.16 (d, J = 8.6 Hz, 2 H), 8.24 (d, J = 8.7 Hz, 2 H); ¹³C NMR δ 46 (br), 48 (br), 64.5, 66.5, 123.9, 128.2, 128.8, 129.2, 136.1, 136.7, 147.2, 147.8, 162.4, 163.5. Anal. Calcd for C19H17ClN4O3S: C, 54.74; H, 4.11; N, 13.44; S, 7.69. Found: C, 55.05; H, 4.14; N, 13.30; S, 7.48.

Preparation of 2-(Aminocarbonyl)-4-(4-methoxyphenyl)-6-morpholino-2*H***-1,3,5-thiadiazine (10h)** [$\mathbf{R}^1 = \mathbf{4}$ -C \mathbf{H}_3 -**OC**₆ \mathbf{H}_4 , $\mathbf{R}^2 = \mathbf{N}(\mathbf{CH}_2\mathbf{CH}_2)_2\mathbf{O}$, $\mathbf{R}^3 = \mathbf{CONH}_2$]. A 2.31 g (5 mmol) portion of **2h** was dissolved in MeOH (60 mL) with stirring and heating and was combined with a solution of Et₃N (0.51 g, 5 mmol) in MeOH (60 mL). The solid formed during cooling was filtered off by suction, washed first with MeOH and then with Et₂O, and dried: yield 95%; mp 167–170 °C dec; ¹H NMR (DMSO- d_6) δ 3.68 (br s, 6 H), 3.79 (s, 3 H) 3.97 (br, 2 H), 5.49 (s, 1 H), 6.92 (d, J = 8.9 Hz, 2 H), 7.75 (s, 1 H), 7.87 (s, 1 H), 8.17 (d, J = 8.9 Hz, 2 H); ¹³C NMR δ 45.8 (br), 46.3 (br), 55.3, 64.6, 65.9, 113.2, 129.6, 129.8, 161.3, 161.4, 162.5, 170.8. Anal. Calcd for $C_{15}H_{18}N_4O_3S$: C, 53.87; H, 5.43; N, 16.76; S, 9.59. Found: C, 53.72; H, 5.31; N, 16.83; S, 9.76.

Synthesis of Imidazoles. General Procedure for the Preparation of the Imidazoles 3 by Oxidation of [Amino-(thiocarbonyl)]amidines 1. For yields of pure compounds, methods, and solvents see Table 1.

Method A (H₂O₂). [Amino(thiocarbonyl)]amidine **1** (10 mmol) was dissolved in MeOH (60 mL) with heating and stirring. Excess H_2O_2 (about 15 mmol, 30% aqueous solution) was added, and the solution was refluxed for 5 min. After further stirring for 30 min, water (100 mL) was added. Stirring was continued for a further 30 min. The resulting precipitate was collected, washed with water, and dried. To remove the sulfur the product was treated with a short columm (silica gel) and was eluted with hexane. If all sulfur was removed, the imidazole **3** was eluted with EtOAc or CHCl₃/ MeOH mixture.

Method B (I₂). [Amino(thiocarbonyl)]amidine **1** (10 mmol) and Et₃N (2.55 g, 25 mmol) were dissolved in EtOH (60 mL) or EtOAc (60 mL) with heating and stirring. A solution of I₂ (2.54 g, 10 mmol) in EtOH or EtOAc (about 50 mL) was added. If EtOAc was used as solvent Et₃NH⁺I⁻ precipitated; this could be dissolved by addition of 20 mL of EtOH. After 1 h of stirring at rt, the EtOAc solution was washed with water, dried with Na₂SO₄. and purified with silica gel (see Method A). In the case of EtOH as solvent, water (100 mL) was added and the precipitate filtered off by suction, washed with water, dried, and purified by column chromatography (see above). Alternatively, the removal of sulfur was possible by dissolving the product in AcOH. Filtration of the sulfur and addition of water to the AcOH solution afforded the imidazole **3**.

All compounds are colorless solids, if not otherwise stated.

Methyl 2-Phenyl-5-piperidinoimidazole-4-carboxylate (3a) $[\mathbf{R}^1 = \mathbf{C}_6\mathbf{H}_5, \mathbf{R}^2 = \mathbf{N}(\mathbf{CH}_2)_5, \mathbf{R}^3 = \mathbf{CO}_2\mathbf{CH}_3]$. Method B: ¹H NMR (CF₃CO₂D) δ 1.51 (br, 2 H), 1.71 (br, 4 H), 3.51 (m, 4 H), 3.74 (s, 3 H), 7.19–7.29 (m, 3 H), 7.51 (d, 2 H); ¹³C NMR δ 23.8, 26.5, 55.9, 57.7, 113.0, 125.3, 129.6, 132.2, 135.9, 146.3, 149.6, 162.6. Anal. Calcd for C₁₆H₁₉N₃O₂: C, 67.34; H, 6.71; N, 14.73. Found: C, 67.32; H, 6.43; N, 14.66.

Ethyl 2-(4-Chlorophenyl)-5-morpholinoimidazole-4carboxylate (3b) [$\mathbb{R}^1 = 4$ -ClC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = \mathbb{CO}_2\mathbb{C}_2\mathbb{H}_3$]. Method B: ¹H NMR (CF₃CO₂D) δ 1.19 (tr, J =7.2 Hz, 3 H), 3.45 (m, 4 H), 3.86 (m, 4 H), 4.29 (q, J = 7.2 Hz, 2 H), 7.31 (d, J = 8.6 Hz, 2 H), 7.56 (d, J = 8.6 Hz, 2 H); ¹³C NMR δ 15.1, 52.1, 67.0, 68.8, 109.7, 121.2, 131.0, 132.9, 144.3, 145.2, 148.4, 162.5. Anal. Calcd for C₁₆H₁₈ClN₃O₃: C, 57.23; H, 5.40; N, 12.52. Found: C, 57.04; H, 5.61; N, 12.34.

2-(4-Chlorophenyl)-5-morpholinoimidazole-4-carbonitrile (3c) [$\mathbf{R}^1 = 4$ -ClC₆H₄, $\mathbf{R}^2 = \mathbf{N}(\mathbf{CH}_2\mathbf{CH}_2)_2\mathbf{O}$, $\mathbf{R}^3 = \mathbf{CN}$]. Method A: ¹H NMR (CF₃CO₂D) δ 4.09 (m, 4 H), 4.43 (m, 4 H), 7.89–7.92 (m, 2 H), 8.06–8.09 (m, 2 H); ¹³C NMR δ 50.1, 68.2, 86.6, 112.2, 121.0, 130.9, 133.2, 145.0, 146.2, 151.7. Anal. Calcd for C₁₄H₁₃ClN₄O: C, 58.23; H, 4.54; N, 19.41; Cl, 12.28. Found: C, 58.20; H, 4.58; N, 19.15; Cl, 12.09.

2-(4-Chlorophenyl)-4-morpholino-5-(4-nitrophenyl)imidazole (3d) [$\mathbb{R}^1 = 4$ -ClC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = 4$ -NO₂C₆H₄]. Method B: red solid; ¹H NMR (CF₃CO₂D) δ 3.63 (m, 4 H), 4.38 (m, 4 H), 7.86 (d, J = 8.6 Hz, 2 H), 8.08 (d, J = 8.6 Hz, 2 H), 8.32 (d, J = 8.9 Hz, 2 H), 8.69 (d, J = 8.9 Hz, 2 H); ¹³C NMR δ 52.5, 69.1, 121.9, 122.0, 127.2, 130.4, 130.5, 133.0, 135.3, 141.3, 143.8, 145.1, 150.4. Anal. Calcd for C₁₉H₁₇ClN₄O₃: C, 59.30; H, 4.45; N, 14.56. Found: C, 59.15; H, 4.41; N, 14.43.

Methyl 2-(4-Methoxyphenyl)-5-morpholinoimidazole-4-carboxylate (3e) [$\mathbb{R}^1 = 4$ -CH₃OC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = \mathbb{CO}_2CH_3$]. Method A: ¹H NMR (CF₃CO₂D) δ 3.44 (m, 4 H), 3.70 (s, 3 H), 3.81 (s, 3 H), 3.85 (m, 4 H), 6.89 (d J = 8.7Hz, 2 H), 7.60 (d, J = 8.7 Hz, 2 H); ¹³C NMR δ 51.5, 55.1, 57.0, 68.3, 108.0, 114.8, 117.5, 131.2, 145.6, 147.9, 162.4, 166.2. Anal. Calcd for $C_{16}H_{19}N_3O_4$: C, 60.55; H, 6.04; N, 13.24. Found: C, 60.58; H, 5.95; N, 13.20.

tert-Butyl 2-(4-Methoxyphenyl)-5-morpholinoimidazole-4-carboxylate (3f) [$\mathbb{R}^1 = 4$ -CH₃OC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2-CH_2)_2O$, $\mathbb{R}^3 = CO_2C(CH_3)_3$]. Method A: ¹H NMR (CDCl₃) δ 1.53 (s, 9 H), 3.48 (m, 4 H), 3.79 (s, 3 H), 3.81 (m, 4 H), 6.90 (d, J = 8.9 Hz, 2 H), 7.73 (d, J = 8.9 Hz, 2 H), 9.48 (br, 1 H); ¹³C NMR δ 28.6, 49.9, 55.3, 66.9, 81.2, 106.9, 114.2, 121.9, 127.2, 144.6, 155.8, 159.4, 160.8. Anal. Calcd for C₁₉H₂₅N₃O₄: C, 63.49; H, 7.01; N, 11.69. Found: C, 63.55; H, 7.08; N, 11.71.

Benzyl 2-(4-Methoxyphenyl)-5-morpholinoimidazole-4-carboxylate (3g) [$\mathbb{R}^1 = 4$ -CH₃OC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = \mathbb{CO}_2 \mathbb{Bn}$]. Method A: ¹H NMR (CF₃CO₂D) δ 3.79 (m, 4 H), 4.02 (m, 4 H), 4.19 (s, 3 H), 5.70 (s, 2 H), 7.39 (d, J = 8.9Hz, 2 H), 7.68 (s, 5 H), 8.11 (d, J = 8.9 Hz, 2 H); ¹³C NMR δ 52.1, 57.6, 68.6, 72.8, 109.1, 115.3, 118.1, 131.5, 131.8, 132.3, 135.7, 146.4, 148.4, 162.6, 166.8. Anal. Calcd for C₂₂H₂₃N₃O₄: C, 67.16; H, 5.89; N, 10.68. Found: C, 67.28; H, 5.88; N, 10.74.

4-Benzoyl-2-(4-methoxyphenyl)-5-morpholinoimidazole (3i) [$\mathbb{R}^1 = 4$ -CH₃OC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = COC_6H_5$]. Method B: yellow crystals; ¹H NMR (CDCl₃) δ 3.12 (m, 4 H), 3.45 (m, 4 H), 3.80 (s, 3 H), 6.80 80 (d, J = 8.8 Hz, 2 H), 7.45–7.54 (m, 3 H), 7.88–7.91 8m, 2 H), 7.99 (d, J = 8.8 Hz, 2 H), 11.33 (s, 1 H); ¹³C NMR δ 51.2, 55.3, 66.2, 114.1, 116.6, 121.6, 128.2, 128.5, 128.6, 131.8, 139.2, 148.2, 157.9, 161.1, 183.5. Anal. Calcd for C₂₁H₂₁N₃O₃: C, 69.40; H, 5.82; N, 11.57. Found: C, 69.07; H, 5.62; N, 11.49.

Methyl 5-(Dimethylamino)-2-(4-methoxyphenyl)imidazole-4-carboxylate (3j) [$\mathbb{R}^1 = 4$ -CH₃OC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_3)_2$, $\mathbb{R}^3 = \mathbb{CO}_2CH_3$]. Method B: ¹H NMR (CDCl₃) δ 3.13 (s, 6 H), 3.84 (s, 3 H), 3.85 (s, 3 H), 6.93 (d, J = 8.9 Hz, 2 H), 7.82 (d, J = 8.9 Hz, 2 H), 9.6 (br, 1 H); ¹³C NMR δ 41.7, 51.1, 55.3, 104.0, 113.7, 121.9, 127.3, 145.4, 157.6, 160.2, 160.8. Anal. Calcd for C₁₄H₁₇N₃O₃: C, 61.07; H, 6.22; N, 15.27. Found: C, 60.99; H, 6.14; N, 15.24.

Methyl 2-(4-Methoxyphenyl)-5-(1-methylpiperazin-4yl)imidazole-4-carboxylate (3k) [$\mathbf{R}^1 = 4$ -CH₃OC₆H₄, $\mathbf{R}^2 =$ N(CH₂CH₂)₂NCH₃, $\mathbf{R}^3 = \mathbf{CO}_2\mathbf{CH}_3$]. Method B: ¹H NMR (CDCl₃) δ 2.30 (s, 3 H), 2.53 (m, 4 H), 3.56 (m, 4 H), 3.80 (s, 6 H), 6.88 (d, J = 8.9 Hz, 2 H), 7.76 (d, J = 8.9 Hz, 2 H), 9.68 (br s, 1 H); ¹³C NMR δ 46.2, 49.2, 51.3, 55.0, 55.4, 104.7, 114.2, 121.8, 127.4, 145.5, 156.9, 160.0, 160.8. Anal. Calcd for C₁₇H₂₂N₄O₃: C, 61,80; H, 6.71; N, 16.96. Found: C, 61.85; H, 6.80; N, 16.84.

Methyl 2-[3,4-(Methylenedioxy)phenyl]-5-morpholinoimidazole-4-carboxylate (3l) [$\mathbb{R}^1 = 3,4$ -OCH₂OC₆H₃, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = CO_2CH_3$]. Method A: ¹H NMR (CF₃CO₂D) δ 3.90 (m, 4 H), 4.27 (s, 3 H), 4.32 (m, 4 H), 6.28 (s, 2 H), 7.19 (d, J = 8.3 Hz, 1 H), 7.51 (d, J = 1.8 Hz, 1 H), 7.65 (dd, J = 8.8, 1.7 Hz, 1 H); ¹³C NMR δ 52.1, 55.7, 68.8, 105.4, 108.6, 109.1, 112.1, 116.2, 126.1, 146.0, 148.4, 152.0, 155.9, 162.9. Anal. Calcd for C₁₆H₁₇N₃O₅: C, 58.00; H, 5.17; N, 12.68. Found: C, 58.01; H, 5.17; N, 12.67.

Methyl 5-Morpholino-2-[4-(trifluoromethyl)phenyl]imidazole-4-carboxylate (3m) [$\mathbb{R}^1 = 4$ -CF₃C₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = CO_2CH_3$]. Method A: ¹H NMR (CDCl₃) δ 3.54 (m, 4 H), 3.83 (m, 4 H), 3.85 (s, 3 H), 7.66 (d, J = 8.2Hz, 2 H), 7.98 (d, J = 8.2 Hz, 2 H), 9.97 (s br, 1 H); ¹³C NMR δ 49.7, 51.6, 66.8, 106.2, 123.8 (q, J = 272.4 Hz), 125.8 (d, J = 3.6 Hz), 126.0, 131.3 (q, J = 32.8 Hz), 132.1, 143.6, 156.6, 159.9. Anal. Calcd for C₁₆H₁₆F₃N₃O₃: C, 54.08; H, 4.54; N, 11.83. Found: C, 54.04; H, 4.86; N, 11.85.

Methyl 2-(4-Bromophenyl)-5-morpholinoimidazole-4carboxylate (3n) [$\mathbb{R}^1 = 4$ -BrC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = \mathbb{CO}_2CH_3$]. Method B: ¹H NMR (DMSO-*d*₆) δ 3.37 (m, 4 H), 3.71 (m, 4 H), 3.78 (s, 3 H), 7.65 (d, *J* = 8.6 Hz, 2 H), 8.04 (d, *J* = 8.6 HZ, 2 H), 12.71 (s, 1 H); ¹³C NMR δ 49.6, 51.2, 66.2, 105 (br), 122.8, 128.4, 128.7, 131.8, 143 (br), 156 (br), 159.5. Anal. Calcd for C₁₅H₁₆BrN₃O₃: C, 49.19; H, 4.40; N, 11.48; Br, 21.82. Found: C, 49.15; H, 4.27; N, 11.50; Br, 21.72.

Methyl 5-Morpholino-2-(3-nitrophenyl)imidazole-4carboxylate (30) [$\mathbb{R}^1 = 3$ -NO₂C₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = CO_2CH_3$]. Method A: ¹H NMR (CF₃CO₂D) δ 4.16 (m, 4 H), 4.49 (s, 3 H), 4.54 (m, 4 H), 8.26 (t, J = 8.2 Hz, 1 H), 8.74 (d, J = 7.9 Hz, 1 H), 8.94 (d, J = 8.4 Hz, 1 H), 9.27 (s, 1 H); ¹³C $\label{eq:NMR beta 52.3, 55.8, 68.6, 110.0, 125.0, 125.1, 130.5, 134.0, 135.8, 142.9, 148.6, 151.1, 162.4. Anal. Calcd for <math display="inline">C_{15}H_{16}N_4O_5{:}$ C, 54.21; H, 4.85; N, 16.86. Found: C, 53.91; H, 4.60; N, 16.91.

Methyl 2-Methyl-5-morpholinoimidazole-4-carboxylate (3p) [$\mathbb{R}^1 = \mathbb{CH}_3$, $\mathbb{R}^2 = \mathbb{N}(\mathbb{CH}_2\mathbb{CH}_2)_2\mathbb{O}$, $\mathbb{R}^3 = \mathbb{CO}_2\mathbb{CH}_3$]. Method A: ¹H NMR (CDCl₃) δ 2.29 (s, 3 H), 3.39 (m, 4 H), 3.74 (s, 3 H), 3.77 (m, 4 H), 10.0 (br, 1 H); ¹³C NMR δ 14.4, 49.8, 51.2, 66.8, 104.4, 145.0, 156.3, 159.8. Anal. Calcd for C₁₀H₁₅N₃O₃: C, 53.22; H, 6.71; N, 18.66. Found: C, 53.17; H, 6.81; N, 18.80.

Methyl 5-Ethoxy-2-phenylimidazole-4-carboxylate (3q) ($\mathbf{R}^1 = \mathbf{C_6H_5}, \mathbf{R}^2 = \mathbf{OC_2H_5}, \mathbf{R}^3 = \mathbf{CO_2CH_3}$). Method B: ¹H NMR (CF₃CO₂D) δ 1.68 (m, 3 H), 4.24, 4.25 (2s, 3 H), 4.80 (m, 2 H), 7.74-8.06 (m, 5 H); ¹³C NMR δ 15.9, 55.8, 76.2, 108.5, 119.1, 129.6, 132.5, 137.0, 144.9, 153.1, 163.0. Anal. Calcd for C₁₃H₁₄N₂O₃: C, 63.40; H, 5.73; N, 11.38. Found: C, 63.29; H, 5.63; N, 11.18.

Methyl 5-(Ethylthio)-2-phenylimidazole-4-carboxylate (3r) ($\mathbb{R}^1 = \mathbb{C}_6\mathbb{H}_5$, $\mathbb{R}^2 = \mathbb{SC}_2\mathbb{H}_5$, $\mathbb{R}^3 = \mathbb{CO}_2\mathbb{CH}_3$). Method B: ¹H NMR ($\mathbb{CF}_3\mathbb{CO}_2\mathbb{D}$) δ 1.54 (t, J = 7.4 Hz, 3 H), 3.35 (q, J = 7.4 Hz, 2 H), 4.29 (s, 3 H), 7.77–8.11 (m, 5 H); ¹³C NMR δ 15.2, 31.2, 55.8, 122.2, 125.4, 129.5, 132.2, 137.0, 139.1, 150.5, 162.5. Anal. Calcd for $\mathbb{C}_{13}\mathbb{H}_{14}\mathbb{N}_2\mathbb{O}_2\mathbb{S}$: C, 59.52; H, 5.38; N, 10.68; S, 12.22. Found: C, 59.47; H, 5.47; N, 10.66; S, 11.91.

Ethyl 2,5-Diphenylimidazole-4-carboxylate (3s) ($\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{C_6H_5}, \mathbf{R}^3 = \mathbf{CO_2C_2H_5}$). Method B: ¹H NMR (CF₃CO₂D) δ 1.58 (t, J = 7.2 Hz, 3 H), 4.78 (q, J = 7.2 Hz, 2 H), 7.83–8.33 (m, 10 H); ¹³C NMR δ 14.6, 67.3, 122.1, 122.7, 126.6, 129.8, 131.4, 131.9, 132.7, 134.6, 137.3, 142.9, 149.9, 162.9. Anal. Calcd for C₁₈H₁₆N₂O₂: C, 73.95; H, 5.52; N, 9.58. Found: C, 74.05; H, 5.60; N, 9.56.

General Procedure for the Preparation of the Imidazoles 3 and 5 by Methylation of [Amino(thiocarbonyl)]amidines 1. For yields of pure products and methods see Table 1.

Method C. A mixture of [amino(thiocarbonyl)]amidine **1** (10 mmol), EtOH (70 mL), and MeI (1.57 g, 11 mmol) was gently warmed (about 50 °C) for 15 min. After the addition of Et₃N (1.12 g, 11 mmol), the solution was refluxed for 30 min. After cooling, the solvent was removed under reduced pressure, and the residue was purified by column chromatography using hexane/EtOAc (6:4). All compounds are colorless solids.

Ethyl 2-(4-Bromophenyl)-5-morpholinoimidazole-4carboxylate (3n) $[R^1 = 4$ -BrC₆H₄, $R^2 = N(CH_2CH_2)_2O$, $R^3 = CO_2CH_3]$. For spectroscopic data see method B above.

Methyl 2-(4-chlorophenyl)-3-methyl-5-morpholinoimidazole-4-carboxylate (5x) [$\mathbb{R}^1 = 4$ -ClC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2-CH_2)_2O$, $\mathbb{R}^3 = CO_2CH_3$]: ¹H NMR (CF₃CO₂D) δ 4.04 (s, 4 H), 4.45 (s, 3 H), 4.52 (s, 3 H), 4.55 (s, 4 H), 7.97-8.11 (m, 4 H); ¹³C NMR δ 39.0, 52.7, 55.6, 69.0, 112.4, 121.5, 133.0, 133.4, 144.1, 146.6, 149.8, 163.2. Anal. Calcd for C₁₆H₁₈ClN₃O₃: C, 57.23; H, 5.40; N, 12.52; Cl, 10.56. Found: C, 57.29; H, 5.74; N, 12.51; Cl, 10.57.

Methyl 3-methyl-2-(4-methoxyphenyl)-5-morpholinoimidazole-4-carboxylate (5y) [$\mathbb{R}^1 = 4$ -CH₃OC₆H₄, $\mathbb{R}^2 =$ N(CH₂CH₂)₂O, $\mathbb{R}^3 = \mathbb{CO}_2$ CH₃]: ¹H NMR (CDCl₃) δ 3.33 (m, 4 H), 3.75 (s, 3 H), 3.79 (m, 4 H), 3.80 (s, 3 H), 3.83 (s, 3 H), 6.93 (d, J = 8.8 Hz, 2 H), 7.93 (d, J = 8.8 Hz, 2 H); ¹³C NMR δ 35.5, 51.0, 51.1, 55.4, 67.0, 108.9, 114.0, 122.0, 131.0, 149.3, 158.0, 160.6, 160.8. Anal. Calcd for C₁₇H₂₁N₃O₄: C, 61.61; H, 6.39; N, 12.68. Found: C, 61.61; H, 6.33; N, 12.57.

General Procedure for the Preparation of the Imidazoles 3 by Reaction of the 1,2,4-Dithiazolium Triiodides 6 with Amines. Method D. Dithiazolium triiodide 6 (30 mmol) and H₂NCH₂R³·HCl (30 mmol) were dissolved in MeCN (150 mL). A solution of Et₃N (6.06 g, 60 mmol) in MeCN (10 mL) was added dropwise with stirring (exothermic reaction). After further stirring for 15 min, the same quantity of Et₃N solution was added again. Stirring was continued for 30 min. Precipitated sulfur was filtered off, and the filtrate was poured into water. After extraction with EtOAc (three times with 100 mL), the combined organic phases were washed with water and dried with Na₂SO₄. The solvent was removed under reduced pressure and the residue purified by column chromatography using hexane/EtOAc. Methyl 2,5-diphenylimidazole-4-carboxylate (3t) ($\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{C_6H_5}$, $\mathbf{R}^3 = \mathbf{CO_2CH_3}$): ¹H NMR (CDCl₃) δ 3.78 (s, 3 H), 7.33–7.90 (m, 10 H), 10.56 (br, 1 H); ¹³C NMR (CF₃CO₂D) δ 55.4, 121.0, 122.1, 125.9, 129.2, 130.9, 131.2, 132.0, 134.0, 136.6, 142.4, 149.3, 162.6. Anal. Calcd for C₁₇H₁₄N₂O₂: C, 73.36; H, 5.07; N, 10.07. Found: C, 73.31; H, 5.06; N, 10.10.

Methyl 2,5-bis(4-methoxyphenyl)imidazole-4-carboxylate (3u) ($\mathbb{R}^1 = \mathbb{R}^2 = 4$ -CH₃OC₆H₄, $\mathbb{R}^3 = \mathbb{CO}_2\mathbb{CH}_3$): ¹H NMR (DMF- d_7) δ 3.81 (s, 3 H), 3.86 (s, 3 H), 3.87 (s, 3 H), 7.03 (d, J = 8.9 Hz, 2 H), 7.09 (d, J = 8.9 Hz, 2 H), 7.99 (d, J = 8.8 Hz, 2 H), 8.23 (d, J = 8.8 Hz, 2 H); ¹³C NMR (DMF- d_7) δ 51.4, 55.6, 55.7, 113.8, 114.8, 122 (br), 123.3, 125.6, 128.4, 131.3, 145 (br), 148.0, 140.4, 161.3. Anal. Calcd for C₁₉H₁₈N₂O₄: C, 67.45; H, 5.36; N, 8.28. Found: C, 67.59; H, 5.39; N, 8.48.

2,5-Bis(4-methoxyphenyl)imidazole-4-carbonitrile (3v) ($\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{4}$ -CH₃OC₆H₄, $\mathbf{R}^3 = \mathbf{CN}$): ¹H NMR (CDCl₃) δ 3.83 (s, 3 H), 3.84 (s, 3 H), 7.08 (d, J = 8.9 Hz, 2 H), 7.14 (d, J = 8.9 Hz, 2 H), 7.83 (d, J = 8.9 Hz, 2 H), 7.98 (d, J = 8.9 Hz, 2 H); IR (cm⁻¹) 2250. Anal. Calcd for C₁₈H₁₅N₃O₂: C, 70.80; H, 4.95; N, 13.77. Found: C, 70.90; H, 4.96; N, 13.76.

Ethyl 2,5-bis(4-chlorophenyl)imidazole-4-carboxylate (3w) ($\mathbf{R}^1 = \mathbf{R}^2 = 4$ -ClC₆H₄, $\mathbf{R}^3 = \mathbf{CO}_2\mathbf{C}_2\mathbf{H}_5$): ¹H NMR (CDCl₃) δ 1.33 (t, J = 7.1 Hz, 3 H), 4.34 (q, J = 7.1 Hz, 2 H), 7.32– 7.50 (m, 4 H), 7.85–7.96 (m, 4 H); ¹³C NMR (CF₃CO₂D) δ 14.6, 67.4, 121.0, 122.4, 124.8, 131.1, 131.7, 133.0, 133.2, 141.6, 141.7, 144.7, 148.9, 162.5. Anal. Calcd for C₁₈H₁₄Cl₂N₂O₂: C, 59.85; H, 3.91; N, 7.76; Cl, 19.63. Found: C, 59.64; H, 3.92; N, 7.81; S, 19.91.

Preparation of Imidazoles 3 by Basic Treatment of 1,2,4-Thiadiazolium Salts 2. Methyl 2-(4-Methoxyphenyl)-5-morpholinoimidazole-4-carboxylate (3e) [$\mathbb{R}^1 = 4$ -CH₃-OC₆H₄, $\mathbb{R}^2 = \mathbb{N}(CH_2CH_2)_2O$, $\mathbb{R}^3 = CO_2CH_3$]. Method E. A solution of the thiadiazolium salt 2e (2.25 g, 5 mmol) and Et₃N (0.5 g, 5 mmol) in MeOH (50 mL) was refluxed for 2 min. After cooling, the solvent was removed under reduced pressure and the residue purified by column chromatography with hexane/ EtOAc. This afforded 1.55 g of the colorless product (spectroscopic data see method A above).

2-(4-Methoxyphenyl)-5-morpholinoimidazole-4-carboxamide (3h) [$R^1 = 4$ -CH₃OC₆H₄, $R^2 = N(CH_2CH_2)_2O$, $R^3 = CONH_2$]. Method F. A saturated aqueous KHCO₃ solution (50 mL) was added to a solution of the 1,2,4-thiadiazolium salt **2h** (4.61 g, 10 mmol) in MeOH (50 mL). The mixture was refluxed for 15 min. After cooling, the product precipitated. This material was filtered off, dried, and purified by column chromatography with CHCl₃, affording 2.47 g of colorless crystals: ¹H NMR (DMSO-*d*₆) δ 3.03 (m, 4 H), 3.73 (m, 4 H), 3.78 (s, 3 H), 6.97 (d, *J* = 8.9 Hz, 2 H), 8.87 (br, 2 H), 7.99 (d, *J* = 8.6 Hz, 2 H), 12.58 (s, 1 H); ¹³C NMR δ 51.8, 55.3, 66.4, 114.1, 114.4, 122.5, 127.4, 144.1, 152.4, 159.8, 161.1. Anal. Calcd for C₁₅H₁₈N₄O₃: C, 59.59; H, 6.00; N, 18.53. Found: C, 59.36; H, 6.26; N, 18.25.

Preparation of Imidazoles 3 by Basic Treatment of the 1,3,5-Thiadiazines 10. For yields see Table 1.

Method G. Et₃N (0.51 g, 5 mmol) was added to a suspension of 1,3,5-thiadiazine **10** (5 mmol) in EtOH (50 mL). After 2 h of reflux, the solvent was removed under reduced pressure and the residue purified by column chromatography.

2-(4-Chlorophenyl)-4-morpholino-5-(4-nitrophenyl)imidazole (3d) $[R^1 = 4-ClC_6H_4, R^2 = N(CH_2CH_2)_2O, R^3 = 4-NO_2C_6H_4]$. For spectroscopic data see method B.

2-(4-Methoxyphenyl)-5-morpholinoimidazole-4-carboxamide (3h) $[R^1 = 4-CH_3OC_6H_4, R^2 = N(CH_2CH_2)_2O, R^3 = CONH_2]$. For spectroscopic data see method F.

Preparation of Diethyl 2-(4-Chlorophenyl)-5-morpholino-4H-imidazole-4,4-dicarboxylate (8) via Methylation of [Amino(thiocarbonyl)]amidine 7. A mixture of [amino(thiocarbonyl)]amidine 7 (2.21 g, 5 mmol), EtOH (70 mL), and MeI (0.78 g, 5.5 mmol) was gently warmed (about 50 °C) for 15 min. Et₃N (0.56 g, 5.5 mmol) was added and the mixture refluxed for 30 min. After cooling, the solvent was reduced to 30 mL. Crystallization in a refrigerator (-20 °C) afforded 1.78 g (87%) of the product: colorless crystals; mp 107.5–108 °C; ^TH NMR (CDCl₃) δ 1.26 (t, J = 7.1 Hz, 6 H), 3.67 (br s, 2 H), 3.77 (br s, 4 H), 3.96 (br s, 2 H), 4.25, 4.26 (2 q, J = 7.1 Hz, 4 H), 7.35 (d, J = 8.6 Hz, 2 H), 8.13 (d, J = 8.6 HZ, 2 H); ¹³C NMR δ 13.9, 48.0, 49.6, 63.1, 66.4, 66.7, 88.3, 128.4, 130.4, 130.5, 137.5, 164.8, 177.4, 178.3. Anal. Calcd for C₁₉H₂₂ClN₃O₅: C, 55.95; H, 5.44; N, 10.31. Found: C, 56.08; H, 5.79; N, 10.32.

JO970072H